Target-Side Data Augmentation for Sequence Generation

Autoregressive sequence generation, a prevalent task in machine learning and natural language processing, generates every target token conditioned on both a source input and previously generated target tokens. Previous data augmentation methods, which have been shown to be effective for the task, mainly enhance source inputs (e.g., injecting noise into the source sequence by random swapping or masking, back translation, etc.) while overlooking the target-side augmentation. In this work, we propose a target-side augmentation method for sequence generation. In training, we use the decoder output probability distributions as soft indicators, which are multiplied with target token embeddings, to build pseudo tokens. These soft pseudo tokens are then used as target tokens to enhance the training. We conduct comprehensive experiments on various sequence generation tasks, including dialog generation, machine translation, and abstractive summarization. Without using any extra labeled data or introducing additional model parameters, our method significantly outperforms strong baselines. The code is available at https://github.com/TARGET-SIDE-DATA-AUG/TSDASG.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here