Task-agnostic Temporally Consistent Facial Video Editing

3 Jul 2020  ·  Meng Cao, Hao-Zhi Huang, Hao Wang, Xuan Wang, Li Shen, Sheng Wang, Linchao Bao, Zhifeng Li, Jiebo Luo ·

Recent research has witnessed the advances in facial image editing tasks. For video editing, however, previous methods either simply apply transformations frame by frame or utilize multiple frames in a concatenated or iterative fashion, which leads to noticeable visual flickers. In addition, these methods are confined to dealing with one specific task at a time without any extensibility. In this paper, we propose a task-agnostic temporally consistent facial video editing framework. Based on a 3D reconstruction model, our framework is designed to handle several editing tasks in a more unified and disentangled manner. The core design includes a dynamic training sample selection mechanism and a novel 3D temporal loss constraint that fully exploits both image and video datasets and enforces temporal consistency. Compared with the state-of-the-art facial image editing methods, our framework generates video portraits that are more photo-realistic and temporally smooth.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here