Task-Driven Dynamic Fusion: Reducing Ambiguity in Video Description

CVPR 2017 Xishan ZhangKe GaoYongdong ZhangDongming ZhangJintao LiQi Tian

Integrating complementary features from multiple channels is expected to solve the description ambiguity problem in video captioning, whereas inappropriate fusion strategies often harm rather than help the performance. Existing static fusion methods in video captioning such as concatenation and summation cannot attend to appropriate feature channels, thus fail to adaptively support the recognition of various kinds of visual entities such as actions and objects... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet