TCM-ICP: Transformation Compatibility Measure for Registering Multiple LIDAR Scans

Rigid registration of multi-view and multi-platform LiDAR scans is a fundamental problem in 3D mapping, robotic navigation, and large-scale urban modeling applications. Data acquisition with LiDAR sensors involves scanning multiple areas from different points of view, thus generating partially overlapping point clouds of the real world scenes. Traditionally, ICP (Iterative Closest Point) algorithm is used to register the acquired point clouds together to form a unique point cloud that captures the scanned real world scene. Conventional ICP faces local minima issues and often needs a coarse initial alignment to converge to the optimum. In this work, we present an algorithm for registering multiple, overlapping LiDAR scans. We introduce a geometric metric called Transformation Compatibility Measure (TCM) which aids in choosing the most similar point clouds for registration in each iteration of the algorithm. The LiDAR scan most similar to the reference LiDAR scan is then transformed using simplex technique. An optimization of the transformation using gradient descent and simulated annealing techniques are then applied to improve the resulting registration. We evaluate the proposed algorithm on four different real world scenes and experimental results shows that the registration performance of the proposed method is comparable or superior to the traditionally used registration methods. Further, the algorithm achieves superior registration results even when dealing with outliers.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here