Modeling Temporal Dependencies within the Target for Long-Term Time Series Forecasting

7 Jun 2024  ·  Qi Xiong, Kai Tang, Minbo Ma, Ji Zhang, Jie Xu, Tianrui Li ·

Long-term time series forecasting (LTSF) is a critical task across diverse domains. Despite significant advancements in LTSF research, we identify a performance bottleneck in existing LTSF methods caused by the inadequate modeling of Temporal Dependencies within the Target (TDT). To address this issue, we propose a novel and generic temporal modeling framework, Temporal Dependency Alignment (TDAlign), that equips existing LTSF methods with TDT learning capabilities. TDAlign introduces two key innovations: 1) a loss function that aligns the change values between adjacent time steps in the predictions with those in the target, ensuring consistency with variation patterns, and 2) an adaptive loss balancing strategy that seamlessly integrates the new loss function with existing LTSF methods without introducing additional learnable parameters. As a plug-and-play framework, TDAlign enhances existing methods with minimal computational overhead, featuring only linear time complexity and constant space complexity relative to the prediction length. Extensive experiments on six strong LTSF baselines across seven real-world datasets demonstrate the effectiveness and flexibility of TDAlign. On average, TDAlign reduces baseline prediction errors by \textbf{1.47\%} to \textbf{9.19\%} and change value errors by \textbf{4.57\%} to \textbf{15.78\%}, highlighting its substantial performance improvements.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods