Teaching Machines to Converse

31 Jan 2020  ·  Jiwei Li ·

The ability of a machine to communicate with humans has long been associated with the general success of AI. This dates back to Alan Turing's epoch-making work in the early 1950s, which proposes that a machine's intelligence can be tested by how well it, the machine, can fool a human into believing that the machine is a human through dialogue conversations... Many systems learn generation rules from a minimal set of authored rules or labels on top of hand-coded rules or templates, and thus are both expensive and difficult to extend to open-domain scenarios. Recently, the emergence of neural network models the potential to solve many of the problems in dialogue learning that earlier systems cannot tackle: the end-to-end neural frameworks offer the promise of scalability and language-independence, together with the ability to track the dialogue state and then mapping between states and dialogue actions in a way not possible with conventional systems. On the other hand, neural systems bring about new challenges: they tend to output dull and generic responses; they lack a consistent or a coherent persona; they are usually optimized through single-turn conversations and are incapable of handling the long-term success of a conversation; and they are not able to take the advantage of the interactions with humans. This dissertation attempts to tackle these challenges: Contributions are two-fold: (1) we address new challenges presented by neural network models in open-domain dialogue generation systems; (2) we develop interactive question-answering dialogue systems by (a) giving the agent the ability to ask questions and (b) training a conversation agent through interactions with humans in an online fashion, where a bot improves through communicating with humans and learning from the mistakes that it makes. read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here