Towards convergence to Nash equilibria in two-team zero-sum games

Contemporary applications of machine learning in two-team e-sports and the superior expressivity of multi-agent generative adversarial networks raise important and overlooked theoretical questions regarding optimization in two-team games. Formally, two-team zero-sum games are defined as multi-player games where players are split into two competing sets of agents, each experiencing a utility identical to that of their teammates and opposite to that of the opposing team. We focus on the solution concept of Nash equilibria (NE). We first show that computing NE for this class of games is $\textit{hard}$ for the complexity class ${\mathrm{CLS}}$. To further examine the capabilities of online learning algorithms in games with full-information feedback, we propose a benchmark of a simple -- yet nontrivial -- family of such games. These games do not enjoy the properties used to prove convergence for relevant algorithms. In particular, we use a dynamical systems perspective to demonstrate that gradient descent-ascent, its optimistic variant, optimistic multiplicative weights update, and extra gradient fail to converge (even locally) to a Nash equilibrium. On a brighter note, we propose a first-order method that leverages control theory techniques and under some conditions enjoys last-iterate local convergence to a Nash equilibrium. We also believe our proposed method is of independent interest for general min-max optimization.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here