Temporal and Object Quantification Nets

We aim to learn generalizable representations for complex activities by quantifying over both entities and time, as in “the kicker is behind all the other players,” or “the player controls the ball until it moves toward the goal.” Such a structural inductive bias of object relations, object quantification, and temporal orders will enable the learned representation to generalize to situations with varying numbers of agents, objects, and time courses. In this paper, we present Temporal and Object Quantification Nets (TOQ-Nets), which provide such structural inductive bias for learning composable action concepts from time sequences that describe the properties and relations of multiple entities. We evaluate TOQ-Nets on two benchmarks: trajectory-based soccer event detection, and 6D pose-based manipulation concept learning. We demonstrate that TOQ-Nets can generalize from small amounts of data to scenarios where there are more agents and objects than were present during training. The learned concepts are also robust with respect to temporally warped sequences and easily transfer to other prediction tasks in a similar domain.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here