Temporal Calibrated Regularization for Robust Noisy Label Learning

1 Jul 2020  ·  Dongxian Wu, Yisen Wang, Zhuobin Zheng, Shu-Tao Xia ·

Deep neural networks (DNNs) exhibit great success on many tasks with the help of large-scale well annotated datasets. However, labeling large-scale data can be very costly and error-prone so that it is difficult to guarantee the annotation quality (i.e., having noisy labels). Training on these noisy labeled datasets may adversely deteriorate their generalization performance. Existing methods either rely on complex training stage division or bring too much computation for marginal performance improvement. In this paper, we propose a Temporal Calibrated Regularization (TCR), in which we utilize the original labels and the predictions in the previous epoch together to make DNN inherit the simple pattern it has learned with little overhead. We conduct extensive experiments on various neural network architectures and datasets, and find that it consistently enhances the robustness of DNNs to label noise.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here