Temporal-difference learning with nonlinear function approximation: lazy training and mean field regimes

27 May 2019  ·  Andrea Agazzi, Jianfeng Lu ·

We discuss the approximation of the value function for infinite-horizon discounted Markov Reward Processes (MRP) with nonlinear functions trained with the Temporal-Difference (TD) learning algorithm. We first consider this problem under a certain scaling of the approximating function, leading to a regime called lazy training. In this regime, the parameters of the model vary only slightly during the learning process, a feature that has recently been observed in the training of neural networks, where the scaling we study arises naturally, implicit in the initialization of their parameters. Both in the under- and over-parametrized frameworks, we prove exponential convergence to local, respectively global minimizers of the above algorithm in the lazy training regime. We then compare this scaling of the parameters to the mean-field regime, where the approximately linear behavior of the model is lost. Under this alternative scaling we prove that all fixed points of the dynamics in parameter space are global minimizers. We finally give examples of our convergence results in the case of models that diverge if trained with non-lazy TD learning, and in the case of neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here