Spatio-Temporal Event Segmentation and Localization for Wildlife Extended Videos

5 May 2020  ·  Ramy Mounir, Roman Gula, Jörn Theuerkauf, Sudeep Sarkar ·

Using offline training schemes, researchers have tackled the event segmentation problem by providing full or weak-supervision through manually annotated labels or self-supervised epoch-based training. Most works consider videos that are at most 10's of minutes long. We present a self-supervised perceptual prediction framework capable of temporal event segmentation by building stable representations of objects over time and demonstrate it on long videos, spanning several days. The approach is deceptively simple but quite effective. We rely on predictions of high-level features computed by a standard deep learning backbone. For prediction, we use an LSTM, augmented with an attention mechanism, trained in a self-supervised manner using the prediction error. The self-learned attention maps effectively localize and track the event-related objects in each frame. The proposed approach does not require labels. It requires only a single pass through the video, with no separate training set. Given the lack of datasets of very long videos, we demonstrate our method on video from 10 days (254 hours) of continuous wildlife monitoring data that we had collected with required permissions. We find that the approach is robust to various environmental conditions such as day/night conditions, rain, sharp shadows, and windy conditions. For the task of temporally locating events, we had an 80% recall rate at 20% false-positive rate for frame-level segmentation. At the activity level, we had an 80% activity recall rate for one false activity detection every 50 minutes. We will make the dataset, which is the first of its kind, and the code available to the research community.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods