TENET: Transformer Encoding Network for Effective Temporal Flow on Motion Prediction

This technical report presents an effective method for motion prediction in autonomous driving. We develop a Transformer-based method for input encoding and trajectory prediction. Besides, we propose the Temporal Flow Header to enhance the trajectory encoding. In the end, an efficient K-means ensemble method is used. Using our Transformer network and ensemble method, we win the first place of Argoverse 2 Motion Forecasting Challenge with the state-of-the-art brier-minFDE score of 1.90.

PDF Abstract

Datasets


Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Motion Forecasting Argoverse CVPR 2020 MacFormer MR (K=6) 0.1272 # 259
minADE (K=1) 1.6565 # 248
minFDE (K=1) 3.6081 # 256
MR (K=1) 0.5596 # 266
minADE (K=6) 0.8121 # 264
minFDE (K=6) 1.2141 # 270
DAC (K=6) 0.9863 # 81
brier-minFDE (K=6) 1.7667 # 12

Methods