Tensor Contraction & Regression Networks

Convolution neural networks typically consist of many convolutional layers followed by several fully-connected layers. While convolutional layers map between high-order activation tensors, the fully-connected layers operate on flattened activation vectors... Despite its success, this approach has notable drawbacks. Flattening discards the multi-dimensional structure of the activations, and the fully-connected layers require a large number of parameters. We present two new techniques to address these problems. First, we introduce tensor contraction layers which can replace the ordinary fully-connected layers in a neural network. Second, we introduce tensor regression layers, which express the output of a neural network as a low-rank multi-linear mapping from a high-order activation tensor to the softmax layer. Both the contraction and regression weights are learned end-to-end by backpropagation. By imposing low rank on both, we use significantly fewer parameters. Experiments on the ImageNet dataset show that applied to the popular VGG and ResNet architectures, our methods significantly reduce the number of parameters in the fully connected layers (about 65% space savings) while negligibly impacting accuracy. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.