Tensor cumulants for statistical inference on invariant distributions

29 Apr 2024  ·  Dmitriy Kunisky, Cristopher Moore, Alexander S. Wein ·

Many problems in high-dimensional statistics appear to have a statistical-computational gap: a range of values of the signal-to-noise ratio where inference is information-theoretically possible, but (conjecturally) computationally intractable. A canonical such problem is Tensor PCA, where we observe a tensor $Y$ consisting of a rank-one signal plus Gaussian noise. Multiple lines of work suggest that Tensor PCA becomes computationally hard at a critical value of the signal's magnitude. In particular, below this transition, no low-degree polynomial algorithm can detect the signal with high probability; conversely, various spectral algorithms are known to succeed above this transition. We unify and extend this work by considering tensor networks, orthogonally invariant polynomials where multiple copies of $Y$ are "contracted" to produce scalars, vectors, matrices, or other tensors. We define a new set of objects, tensor cumulants, which provide an explicit, near-orthogonal basis for invariant polynomials of a given degree. This basis lets us unify and strengthen previous results on low-degree hardness, giving a combinatorial explanation of the hardness transition and of a continuum of subexponential-time algorithms that work below it, and proving tight lower bounds against low-degree polynomials for recovering rather than just detecting the signal. It also lets us analyze a new problem of distinguishing between different tensor ensembles, such as Wigner and Wishart tensors, establishing a sharp computational threshold and giving evidence of a new statistical-computational gap in the Central Limit Theorem for random tensors. Finally, we believe these cumulants are valuable mathematical objects in their own right: they generalize the free cumulants of free probability theory from matrices to tensors, and share many of their properties, including additivity under additive free convolution.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods