$\texttt{HEPfit}$: a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models

30 Oct 2019  ·  Jorge de Blas, Debtosh Chowdhury, Marco Ciuchini, Antonio M. Coutinho, Otto Eberhardt, Marco Fedele, Enrico Franco, Giovanni Grilli di Cortona, Victor Miralles, Satoshi Mishima, Ayan Paul, Ana Penuelas, Maurizio Pierini, Laura Reina, Luca Silvestrini, Mauro Valli, Ryoutaro Watanabe, Norimi Yokozaki ·

$\texttt{HEPfit}$ is a flexible open-source tool which, given the Standard Model or any of its extensions, allows to $\textit{i)}$ fit the model parameters to a given set of experimental observables; $\textit{ii)}$ obtain predictions for observables. $\texttt{HEPfit}$ can be used either in Monte Carlo mode, to perform a Bayesian Markov Chain Monte Carlo analysis of a given model, or as a library, to obtain predictions of observables for a given point in the parameter space of the model, allowing $\texttt{HEPfit}$ to be used in any statistical framework. In the present version, around a thousand observables have been implemented in the Standard Model and in several new physics scenarios. In this paper, we describe the general structure of the code as well as models and observables implemented in the current release.

PDF Abstract

Categories


High Energy Physics - Phenomenology High Energy Physics - Experiment