$\texttt{DeepSqueeze}$: Decentralization Meets Error-Compensated Compression

17 Jul 2019  ·  Hanlin Tang, Xiangru Lian, Shuang Qiu, Lei Yuan, Ce Zhang, Tong Zhang, Ji Liu ·

Communication is a key bottleneck in distributed training. Recently, an \emph{error-compensated} compression technology was particularly designed for the \emph{centralized} learning and receives huge successes, by showing significant advantages over state-of-the-art compression based methods in saving the communication cost. Since the \emph{decentralized} training has been witnessed to be superior to the traditional \emph{centralized} training in the communication restricted scenario, therefore a natural question to ask is "how to apply the error-compensated technology to the decentralized learning to further reduce the communication cost." However, a trivial extension of compression based centralized training algorithms does not exist for the decentralized scenario. key difference between centralized and decentralized training makes this extension extremely non-trivial. In this paper, we propose an elegant algorithmic design to employ error-compensated stochastic gradient descent for the decentralized scenario, named $\texttt{DeepSqueeze}$. Both the theoretical analysis and the empirical study are provided to show the proposed $\texttt{DeepSqueeze}$ algorithm outperforms the existing compression based decentralized learning algorithms. To the best of our knowledge, this is the first time to apply the error-compensated compression to the decentralized learning.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here