Texture Enhanced Image Denoising via Gradient Histogram Preservation

CVPR 2013  ·  Wangmeng Zuo, Lei Zhang, Chunwei Song, David Zhang ·

Image denoising is a classical yet fundamental problem in low level vision, as well as an ideal test bed to evaluate various statistical image modeling methods. One of the most challenging problems in image denoising is how to preserve the fine scale texture structures while removing noise. Various natural image priors, such as gradient based prior, nonlocal self-similarity prior, and sparsity prior, have been extensively exploited for noise removal. The denoising algorithms based on these priors, however, tend to smooth the detailed image textures, degrading the image visual quality. To address this problem, in this paper we propose a texture enhanced image denoising (TEID) method by enforcing the gradient distribution of the denoised image to be close to the estimated gradient distribution of the original image. A novel gradient histogram preservation (GHP) algorithm is developed to enhance the texture structures while removing noise. Our experimental results demonstrate that the proposed GHP based TEID can well preserve the texture features of the denoised images, making them look more natural.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here