The asymptotics of ranking algorithms

7 Apr 2012  ·  John C. Duchi, Lester Mackey, Michael. I. Jordan ·

We consider the predictive problem of supervised ranking, where the task is to rank sets of candidate items returned in response to queries. Although there exist statistical procedures that come with guarantees of consistency in this setting, these procedures require that individuals provide a complete ranking of all items, which is rarely feasible in practice. Instead, individuals routinely provide partial preference information, such as pairwise comparisons of items, and more practical approaches to ranking have aimed at modeling this partial preference data directly. As we show, however, such an approach raises serious theoretical challenges. Indeed, we demonstrate that many commonly used surrogate losses for pairwise comparison data do not yield consistency; surprisingly, we show inconsistency even in low-noise settings. With these negative results as motivation, we present a new approach to supervised ranking based on aggregation of partial preferences, and we develop $U$-statistic-based empirical risk minimization procedures. We present an asymptotic analysis of these new procedures, showing that they yield consistency results that parallel those available for classification. We complement our theoretical results with an experiment studying the new procedures in a large-scale web-ranking task.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here