The Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel'dovich effect

13 Nov 2019  ·  Mathew S. Madhavacheril, J. Colin Hill, Sigurd Naess, Graeme E. Addison, Simone Aiola, Taylor Baildon, Nicholas Battaglia, Rachel Bean, J. Richard Bond, Erminia Calabrese, Victoria Calafut, Steve K. Choi, Omar Darwish, Mark J. Devlin, Joanna Dunkley, Rolando Dünner, Simone Ferraro, Patricio A. Gallardo, Mark Halpern, Dongwon Han, Matthew Hasselfield, Matt Hilton, Adam D. Hincks, Renée Hložek, Shuay-Pwu Patty Ho, Kevin M. Huffenberger, John P. Hughes, Brian J. Koopman, Arthur Kosowsky, Martine Lokken, Thibaut Louis, Marius Lungu, Amanda MacInnis, Loïc Maurin, Jeffrey J. McMahon, Kavilan Moodley, Federico Nati, Michael D. Niemack, Lyman A. Page, Bruce Partridge, Naomi Robertson, Neelima Sehgal, Emmanuel Schaan, Alessandro Schillaci, Blake D. Sherwin, Cristóbal Sifón, Sara M. Simon, David N. Spergel, Suzanne T. Staggs, Emilie R. Storer, Alexander van Engelen, Eve M. Vavagiakis, Edward J. Wollack, Zhilei Xu ·

Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed exclusively using satellite data. In this paper, we implement a component separation method based on the internal linear combination (ILC) approach which we have designed to optimally account for the anisotropic noise (in the 2D Fourier domain) often found in ground-based CMB experiments. Using this method, we combine multi-frequency data from the Planck satellite and the Atacama Cosmology Telescope Polarimeter (ACTPol) to construct the first wide-area, arcminute-resolution component-separated maps (covering approximately 2100 sq. deg.) of the CMB temperature anisotropy and the thermal Sunyaev-Zel'dovich (tSZ) effect sourced by the inverse-Compton scattering of CMB photons off hot, ionized gas. Our ILC pipeline allows for explicit deprojection of various contaminating signals, including a modified blackbody approximation of the cosmic infrared background (CIB) spectral energy distribution. The cleaned CMB maps will be a useful resource for CMB lensing reconstruction, kinematic SZ cross-correlations, and primordial non-Gaussianity studies. The tSZ maps will be used to study the pressure profiles of galaxies, groups, and clusters through cross-correlations with halo catalogs, with dust contamination controlled via CIB deprojection. The data products described in this paper are available on LAMBDA.

PDF Abstract

Categories


Cosmology and Nongalactic Astrophysics Astrophysics of Galaxies