The Classification Accuracy of Multiple-Metric Learning Algorithm on Multi-Sensor Fusion

11 Sep 2013Firouz Abdullah Al-WassaiN. V. Kalyankar

This paper focuses on two main issues; first one is the impact of Similarity Search to learning the training sample in metric space, and searching based on supervised learning classi-fication. In particular, four metrics space searching are based on spatial information that are introduced as the following; Cheby-shev Distance (CD); Bray Curtis Distance (BCD); Manhattan Distance (MD) and Euclidean Distance(ED) classifiers... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet