The Complexity of Adversarially Robust Proper Learning of Halfspaces with Agnostic Noise
We study the computational complexity of adversarially robust proper learning of halfspaces in the distribution-independent agnostic PAC model, with a focus on $L_p$ perturbations. We give a computationally efficient learning algorithm and a nearly matching computational hardness result for this problem. An interesting implication of our findings is that the $L_{\infty}$ perturbations case is provably computationally harder than the case $2 \leq p < \infty$.
PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here