The Emergence of Organizing Structure in Conceptual Representation

28 Nov 2016  ·  Brenden M. Lake, Neil D. Lawrence, Joshua B. Tenenbaum ·

Both scientists and children make important structural discoveries, yet their computational underpinnings are not well understood. Structure discovery has previously been formalized as probabilistic inference about the right structural form --- where form could be a tree, ring, chain, grid, etc. [Kemp & Tenenbaum (2008). The discovery of structural form. PNAS, 105(3), 10687-10692]. While this approach can learn intuitive organizations, including a tree for animals and a ring for the color circle, it assumes a strong inductive bias that considers only these particular forms, and each form is explicitly provided as initial knowledge. Here we introduce a new computational model of how organizing structure can be discovered, utilizing a broad hypothesis space with a preference for sparse connectivity. Given that the inductive bias is more general, the model's initial knowledge shows little qualitative resemblance to some of the discoveries it supports. As a consequence, the model can also learn complex structures for domains that lack intuitive description, as well as predict human property induction judgments without explicit structural forms. By allowing form to emerge from sparsity, our approach clarifies how both the richness and flexibility of human conceptual organization can coexist.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here