The Exact Sample Complexity Gain from Invariances for Kernel Regression

NeurIPS 2023  ·  Behrooz Tahmasebi, Stefanie Jegelka ·

In practice, encoding invariances into models improves sample complexity. In this work, we study this phenomenon from a theoretical perspective. In particular, we provide minimax optimal rates for kernel ridge regression on compact manifolds, with a target function that is invariant to a group action on the manifold. Our results hold for any smooth compact Lie group action, even groups of positive dimension. For a finite group, the gain effectively multiplies the number of samples by the group size. For groups of positive dimension, the gain is observed by a reduction in the manifold's dimension, in addition to a factor proportional to the volume of the quotient space. Our proof takes the viewpoint of differential geometry, in contrast to the more common strategy of using invariant polynomials. This new geometric viewpoint on learning with invariances may be of independent interest.

PDF Abstract NeurIPS 2023 PDF NeurIPS 2023 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here