The geometry of kernelized spectral clustering

29 Apr 2014Geoffrey SchiebingerMartin J. WainwrightBin Yu

Clustering of data sets is a standard problem in many areas of science and engineering. The method of spectral clustering is based on embedding the data set using a kernel function, and using the top eigenvectors of the normalized Laplacian to recover the connected components... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet