The Global Optimization Geometry of Shallow Linear Neural Networks

13 May 2018  ·  Zhihui Zhu, Daniel Soudry, Yonina C. Eldar, Michael B. Wakin ·

We examine the squared error loss landscape of shallow linear neural networks. We show---with significantly milder assumptions than previous works---that the corresponding optimization problems have benign geometric properties: there are no spurious local minima and the Hessian at every saddle point has at least one negative eigenvalue. This means that at every saddle point there is a directional negative curvature which algorithms can utilize to further decrease the objective value. These geometric properties imply that many local search algorithms (such as the gradient descent which is widely utilized for training neural networks) can provably solve the training problem with global convergence.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here