The global optimum of shallow neural network is attained by ridgelet transform

We prove that the global minimum of the backpropagation (BP) training problem of neural networks with an arbitrary nonlinear activation is given by the ridgelet transform. A series of computational experiments show that there exists an interesting similarity between the scatter plot of hidden parameters in a shallow neural network after the BP training and the spectrum of the ridgelet transform. By introducing a continuous model of neural networks, we reduce the training problem to a convex optimization in an infinite dimensional Hilbert space, and obtain the explicit expression of the global optimizer via the ridgelet transform.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here