The importance of better models in stochastic optimization

20 Mar 2019  ·  Hilal Asi, John C. Duchi ·

Standard stochastic optimization methods are brittle, sensitive to stepsize choices and other algorithmic parameters, and they exhibit instability outside of well-behaved families of objectives. To address these challenges, we investigate models for stochastic minimization and learning problems that exhibit better robustness to problem families and algorithmic parameters. With appropriately accurate models---which we call the aProx family---stochastic methods can be made stable, provably convergent and asymptotically optimal; even modeling that the objective is nonnegative is sufficient for this stability. We extend these results beyond convexity to weakly convex objectives, which include compositions of convex losses with smooth functions common in modern machine learning applications. We highlight the importance of robustness and accurate modeling with a careful experimental evaluation of convergence time and algorithm sensitivity.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here