The Minimum Cost Connected Subgraph Problem in Medical Image Analysis

20 Jun 2016  ·  Markus Rempfler, Bjoern Andres, Bjoern H. Menze ·

Several important tasks in medical image analysis can be stated in the form of an optimization problem whose feasible solutions are connected subgraphs. Examples include the reconstruction of neural or vascular structures under connectedness constraints. We discuss the minimum cost connected subgraph (MCCS) problem and its approximations from the perspective of medical applications. We propose a) objective-dependent constraints and b) novel constraint generation schemes to solve this optimization problem exactly by means of a branch-and-cut algorithm. These are shown to improve scalability and allow us to solve instances of two medical benchmark datasets to optimality for the first time. This enables us to perform a quantitative comparison between exact and approximative algorithms, where we identify the geodesic tree algorithm as an excellent alternative to exact inference on the examined datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here