The NANOGrav 11-year Data Set: High-precision timing of 45 Millisecond Pulsars

24 Dec 2017Zaven ArzoumanianAdam BrazierSarah Burke-SpolaorSydney ChamberlinShami ChatterjeeBrian ChristyJames M. CordesNeil J. CornishFronefield CrawfordH. Thankful CromartieKathryn CrowterMegan E. DeCesarPaul B. DemorestTimothy DolchJustin A. EllisRobert D. FerdmanElizabeth C. FerraraEmmanuel FonsecaNathan Garver-DanielsPeter A. GentileDaniel HalmrastEliu HuertaFredrick A. JenetCody JessupGlenn JonesMegan L. JonesDavid L. KaplanMichael T. LamT. Joseph W. LazioLina LevinAndrea LommenDuncan R. LorimerJing LuoRyan S. LynchDustin MadisonAllison M. MatthewsMaura A. McLaughlinSean T. McWilliamsChiara MingarelliCherry NgDavid J. NiceTimothy T. PennucciScott M. RansomPaul S. RayXavier SiemensJoseph SimonRenee SpiewakIngrid H. StairsDaniel R. StinebringKevin StovallJoseph K. SwiggumStephen R. TaylorMichele VallisneriRutger van HaasterenSarah J. VigelandWeiwei Zhu

We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet