The performance of orthogonal multi-matching pursuit under RIP

19 Oct 2012  ·  Zhiqiang Xu ·

The orthogonal multi-matching pursuit (OMMP) is a natural extension of orthogonal matching pursuit (OMP). We denote the OMMP with the parameter $M$ as OMMP(M) where $M\geq 1$ is an integer... The main difference between OMP and OMMP(M) is that OMMP(M) selects $M$ atoms per iteration, while OMP only adds one atom to the optimal atom set. In this paper, we study the performance of orthogonal multi-matching pursuit (OMMP) under RIP. In particular, we show that, when the measurement matrix A satisfies $(9s, 1/10)$-RIP, there exists an absolutely constant $M_0\leq 8$ so that OMMP(M_0) can recover $s$-sparse signal within $s$ iterations. We furthermore prove that, for slowly-decaying $s$-sparse signal, OMMP(M) can recover s-sparse signal within $O(\frac{s}{M})$ iterations for a large class of $M$. In particular, for $M=s^a$ with $a\in [0,1/2]$, OMMP(M) can recover slowly-decaying $s$-sparse signal within $O(s^{1-a})$ iterations. The result implies that OMMP can reduce the computational complexity heavily. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here