The power of deeper networks for expressing natural functions

ICLR 2018  ·  David Rolnick, Max Tegmark ·

It is well-known that neural networks are universal approximators, but that deeper networks tend in practice to be more powerful than shallower ones. We shed light on this by proving that the total number of neurons $m$ required to approximate natural classes of multivariate polynomials of $n$ variables grows only linearly with $n$ for deep neural networks, but grows exponentially when merely a single hidden layer is allowed. We also provide evidence that when the number of hidden layers is increased from $1$ to $k$, the neuron requirement grows exponentially not with $n$ but with $n^{1/k}$, suggesting that the minimum number of layers required for practical expressibility grows only logarithmically with $n$.

PDF Abstract ICLR 2018 PDF ICLR 2018 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here