The Price of Differential Privacy For Online Learning

ICML 2017  ·  Naman Agarwal, Karan Singh ·

We design differentially private algorithms for the problem of online linear optimization in the full information and bandit settings with optimal $\tilde{O}(\sqrt{T})$ regret bounds. In the full-information setting, our results demonstrate that $\epsilon$-differential privacy may be ensured for free -- in particular, the regret bounds scale as $O(\sqrt{T})+\tilde{O}\left(\frac{1}{\epsilon}\right)$... For bandit linear optimization, and as a special case, for non-stochastic multi-armed bandits, the proposed algorithm achieves a regret of $\tilde{O}\left(\frac{1}{\epsilon}\sqrt{T}\right)$, while the previously known best regret bound was $\tilde{O}\left(\frac{1}{\epsilon}T^{\frac{2}{3}}\right)$. read more

PDF Abstract ICML 2017 PDF ICML 2017 Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here