What Makes for Good Image Captions?

1 May 2024  ·  Delong Chen, Samuel Cahyawijaya, Etsuko Ishii, Ho Shu Chan, Yejin Bang, Pascale Fung ·

This paper establishes a formal information-theoretic framework for image captioning, conceptualizing captions as compressed linguistic representations that selectively encode semantic units in images. Our framework posits that good image captions should balance three key aspects: informationally sufficient, minimally redundant, and readily comprehensible by humans. By formulating these aspects as quantitative measures with adjustable weights, our framework provides a flexible foundation for analyzing and optimizing image captioning systems across diverse task requirements. To demonstrate its applicability, we introduce the Pyramid of Captions (PoCa) method, which generates enriched captions by integrating local and global visual information. We present both theoretical proof that PoCa improves caption quality under certain assumptions, and empirical validation of its effectiveness across various image captioning models and datasets.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here