The Rate-Distortion-Accuracy Tradeoff: JPEG Case Study

3 Aug 2020  ·  Xiyang Luo, Hossein Talebi, Feng Yang, Michael Elad, Peyman Milanfar ·

Handling digital images is almost always accompanied by a lossy compression in order to facilitate efficient transmission and storage. This introduces an unavoidable tension between the allocated bit-budget (rate) and the faithfulness of the resulting image to the original one (distortion). An additional complicating consideration is the effect of the compression on recognition performance by given classifiers (accuracy). This work aims to explore this rate-distortion-accuracy tradeoff. As a case study, we focus on the design of the quantization tables in the JPEG compression standard. We offer a novel optimal tuning of these tables via continuous optimization, leveraging a differential implementation of both the JPEG encoder-decoder and an entropy estimator. This enables us to offer a unified framework that considers the interplay between rate, distortion and classification accuracy. In all these fronts, we report a substantial boost in performance by a simple and easily implemented modification of these tables.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here