The Sogou-TIIC Speech Translation System for IWSLT 2018

This paper describes our speech translation system for the IWSLT 2018 Speech Translation of lectures and TED talks from English to German task. The pipeline approach is employed in our work, which mainly includes the Automatic Speech Recognition (ASR) system, a post-processing module, and the Neural Machine Translation (NMT) system. Our ASR system is an ensemble system of Deep-CNN, BLSTM, TDNN, N-gram Language model with lattice rescoring. We report average results on tst2013, tst2014, tst2015. Our best combination system has an average WER of 6.73. The machine translation system is based on Google’s Transformer architecture. We achieved an improvement of 3.6 BLEU over baseline system by applying several techniques, such as cleaning parallel corpus, fine tuning of single model, ensemble models and re-scoring with additional features. Our final average result on speech translation is 31.02 BLEU.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here