The Statistics of Streaming Sparse Regression

13 Dec 2014Jacob SteinhardtStefan WagerPercy Liang

We present a sparse analogue to stochastic gradient descent that is guaranteed to perform well under similar conditions to the lasso. In the linear regression setup with irrepresentable noise features, our algorithm recovers the support set of the optimal parameter vector with high probability, and achieves a statistically quasi-optimal rate of convergence of Op(k log(d)/T), where k is the sparsity of the solution, d is the number of features, and T is the number of training examples... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet