The Universal $\ell^p$-Metric on Merge Trees

22 Dec 2021  ·  Robert Cardona, Justin Curry, Tung Lam, Michael Lesnick ·

Adapting a definition given by Bjerkevik and Lesnick for multiparameter persistence modules, we introduce an $\ell^p$-type extension of the interleaving distance on merge trees. We show that our distance is a metric, and that it upper-bounds the $p$-Wasserstein distance between the associated barcodes. For each $p\in[1,\infty]$, we prove that this distance is stable with respect to cellular sublevel filtrations and that it is the universal (i.e., largest) distance satisfying this stability property. In the $p=\infty$ case, this gives a novel proof of universality for the interleaving distance on merge trees.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here