The variational hierarchical EM algorithm for clustering hidden Markov models

In this paper, we derive a novel algorithm to cluster hidden Markov models (HMMs) according to their probability distributions. We propose a variational hierarchical EM algorithm that i) clusters a given collection of HMMs into groups of HMMs that are similar, in terms of the distributions they represent, and ii) characterizes each group by a ``cluster center'', i.e., a novel HMM that is representative for the group... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet