The water abundance in Jupiter's equatorial zone

18 Dec 2020  ·  Cheng Li, Andrew Ingersoll, Scott Bolton, Steven Levin, Michael Janssen, Sushil Atreya, Jonathan Lunine, Paul Steffes, Shannon Brown, Tristan Guillot, Michael Allison, John Arballo, Amadeo Bellotti, Virgil Adumitroaie, Samuel Gulkis, Amoree Hodges, Liming Li, Sidharth Misra, Glenn Orton, Fabiano Oyafuso, Daniel Santos-Costa, Hunter Waite, Zhimeng Zhang ·

Oxygen is the most common element after hydrogen and helium in Jupiter's atmosphere, and may have been the primary condensable (as water ice) in the protoplanetary disk. Prior to the Juno mission, in situ measurements of Jupiter's water abundance were obtained from the Galileo Probe, which dropped into a meteorologically anomalous site. The findings of the Galileo Probe were inconclusive because the concentration of water was still increasing when the probe died. Here, we initially report on the water abundance in the equatorial region, from 0 to 4 degrees north latitude, based on 1.25 to 22 GHz data from Juno Microwave radiometer probing approximately 0.7 to 30 bars pressure. Because Juno discovered the deep atmosphere to be surprisingly variable as a function of latitude, it remains to confirm whether the equatorial abundance represents Jupiter's global water abundance. The water abundance at the equatorial region is inferred to be $2.5_{-1.6}^{+2.2}\times10^3$ ppm, or $2.7_{-1.7}^{+2.4}$ times the protosolar oxygen elemental ratio to H (1$\sigma$ uncertainties). If reflective of the global water abundance, the result suggests that the planetesimals formed Jupiter are unlikely to be water-rich clathrate hydrates.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Earth and Planetary Astrophysics