The Well Tempered Lasso

8 Jun 2018  ·  Yuanzhi Li, Yoram Singer ·

We study the complexity of the entire regularization path for least squares regression with 1-norm penalty, known as the Lasso. Every regression parameter in the Lasso changes linearly as a function of the regularization value. The number of changes is regarded as the Lasso's complexity. Experimental results using exact path following exhibit polynomial complexity of the Lasso in the problem size. Alas, the path complexity of the Lasso on artificially designed regression problems is exponential. We use smoothed analysis as a mechanism for bridging the gap between worst case settings and the de facto low complexity. Our analysis assumes that the observed data has a tiny amount of intrinsic noise. We then prove that the Lasso's complexity is polynomial in the problem size. While building upon the seminal work of Spielman and Teng on smoothed complexity, our analysis is morally different as it is divorced from specific path following algorithms. We verify the validity of our analysis in experiments with both worst case settings and real datasets. The empirical results we obtain closely match our analysis.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here