Theoretical Guarantees of Deep Embedding Losses Under Label Noise

6 Dec 2018  ·  Nam Le, Jean-Marc Odobez ·

Collecting labeled data to train deep neural networks is costly and even impractical for many tasks. Thus, research effort has been focused in automatically curated datasets or unsupervised and weakly supervised learning. The common problem in these directions is learning with unreliable label information. In this paper, we address the tolerance of deep embedding learning losses against label noise, i.e. when the observed labels are different from the true labels. Specifically, we provide the sufficient conditions to achieve theoretical guarantees for the 2 common loss functions: marginal loss and triplet loss. From these theoretical results, we can estimate how sampling strategies and initialization can affect the level of resistance against label noise. The analysis also helps providing more effective guidelines in unsupervised and weakly supervised deep embedding learning.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here