Theoretical Linear Convergence of Deep Unfolding Network for Block-Sparse Signal Recovery

18 Nov 2021  ·  Rong Fu, Vincent Monardo, Tianyao Huang, Yimin Liu ·

In this paper, we consider the recovery of the high-dimensional block-sparse signal from a compressed set of measurements, where the non-zero coefficients of the recovered signal occur in a small number of blocks. Adopting the idea of deep unfolding, we explore the block-sparse structure and put forward a block-sparse reconstruction network named Ada-BlockLISTA, which performs gradient descent on every single block followed by a block-wise shrinkage. Furthermore, we prove the linear convergence rate of our proposed network, which also theoretically guarantees exact recovery for a potentially higher sparsity level based on underlyingblock structure. Numerical results indicate that Ada-BlockLISTA yields better signal recovery performance compared with existing algorithms, which ignore the additional block structure in the signal model.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here