Theoretical properties of the global optimizer of two layer neural network

30 Oct 2017  ·  Digvijay Boob, Guanghui Lan ·

In this paper, we study the problem of optimizing a two-layer artificial neural network that best fits a training dataset. We look at this problem in the setting where the number of parameters is greater than the number of sampled points. We show that for a wide class of differentiable activation functions (this class involves "almost" all functions which are not piecewise linear), we have that first-order optimal solutions satisfy global optimality provided the hidden layer is non-singular. Our results are easily extended to hidden layers given by a flat matrix from that of a square matrix. Results are applicable even if network has more than one hidden layer provided all hidden layers satisfy non-singularity, all activations are from the given "good" class of differentiable functions and optimization is only with respect to the last hidden layer. We also study the smoothness properties of the objective function and show that it is actually Lipschitz smooth, i.e., its gradients do not change sharply. We use smoothness properties to guarantee asymptotic convergence of O(1/number of iterations) to a first-order optimal solution. We also show that our algorithm will maintain non-singularity of hidden layer for any finite number of iterations.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here