Theory and Applications of Financial Chaos Index

5 Jan 2021  ·  Masoud Ataei, Shengyuan Chen, Zijiang Yang, M. Reza Peyghami ·

We develop a new stock market index that captures the chaos existing in the market by measuring the mutual changes of asset prices. This new index relies on a tensor-based embedding of the stock market information, which in turn frees it from the restrictive value- or capitalization-weighting assumptions that commonly underlie other various popular indexes. We show that our index is a robust estimator of the market volatility which enables us to characterize the market by performing the task of segmentation with a high degree of reliability. In addition, we analyze the dynamics and kinematics of the realized market volatility as compared to the implied volatility by introducing a time-dependent dynamical system model. Our computational results which pertain to the time period from January 1990 to December 2019 imply that there exist a bidirectional causal relation between the processes underlying the realized and implied volatility of the stock market within the given time period, where it is shown that the later has a stronger causal effect on the former as compared to the opposite. This result connotes that the implied volatility of the market plays a key role in characterization of the market's realized volatility.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here