Theory of the Frequency Principle for General Deep Neural Networks

21 Jun 2019  ·  Tao Luo, Zheng Ma, Zhi-Qin John Xu, Yaoyu Zhang ·

Along with fruitful applications of Deep Neural Networks (DNNs) to realistic problems, recently, some empirical studies of DNNs reported a universal phenomenon of Frequency Principle (F-Principle): a DNN tends to learn a target function from low to high frequencies during the training. The F-Principle has been very useful in providing both qualitative and quantitative understandings of DNNs. In this paper, we rigorously investigate the F-Principle for the training dynamics of a general DNN at three stages: initial stage, intermediate stage, and final stage. For each stage, a theorem is provided in terms of proper quantities characterizing the F-Principle. Our results are general in the sense that they work for multilayer networks with general activation functions, population densities of data, and a large class of loss functions. Our work lays a theoretical foundation of the F-Principle for a better understanding of the training process of DNNs.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here