Thinking Inside the Ball: Near-Optimal Minimization of the Maximal Loss

4 May 2021  ·  Yair Carmon, Arun Jambulapati, Yujia Jin, Aaron Sidford ·

We characterize the complexity of minimizing $\max_{i\in[N]} f_i(x)$ for convex, Lipschitz functions $f_1,\ldots, f_N$. For non-smooth functions, existing methods require $O(N\epsilon^{-2})$ queries to a first-order oracle to compute an $\epsilon$-suboptimal point and $\tilde{O}(N\epsilon^{-1})$ queries if the $f_i$ are $O(1/\epsilon)$-smooth. We develop methods with improved complexity bounds of $\tilde{O}(N\epsilon^{-2/3} + \epsilon^{-8/3})$ in the non-smooth case and $\tilde{O}(N\epsilon^{-2/3} + \sqrt{N}\epsilon^{-1})$ in the $O(1/\epsilon)$-smooth case. Our methods consist of a recently proposed ball optimization oracle acceleration algorithm (which we refine) and a careful implementation of said oracle for the softmax function. We also prove an oracle complexity lower bound scaling as $\Omega(N\epsilon^{-2/3})$, showing that our dependence on $N$ is optimal up to polylogarithmic factors.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.