Thompson Sampling for Contextual Bandits with Linear Payoffs

15 Sep 2012  ·  Shipra Agrawal, Navin Goyal ·

Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical performance compared to the state-of-the-art methods. However, many questions regarding its theoretical performance remained open. In this paper, we design and analyze a generalization of Thompson Sampling algorithm for the stochastic contextual multi-armed bandit problem with linear payoff functions, when the contexts are provided by an adaptive adversary. This is among the most important and widely studied versions of the contextual bandits problem. We provide the first theoretical guarantees for the contextual version of Thompson Sampling. We prove a high probability regret bound of $\tilde{O}(d^{3/2}\sqrt{T})$ (or $\tilde{O}(d\sqrt{T \log(N)})$), which is the best regret bound achieved by any computationally efficient algorithm available for this problem in the current literature, and is within a factor of $\sqrt{d}$ (or $\sqrt{\log(N)}$) of the information-theoretic lower bound for this problem.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here