Three-Dimensionally Embedded Graph Convolutional Network (3DGCN) for Molecule Interpretation

24 Nov 2018  ·  Hyeoncheol Cho, Insung S. Choi ·

We present a three-dimensional graph convolutional network (3DGCN), which predicts molecular properties and biochemical activities, based on 3D molecular graph. In the 3DGCN, graph convolution is unified with learning operations on the vector to handle the spatial information from molecular topology. The 3DGCN model exhibits significantly higher performance on various tasks compared with other deep-learning models, and has the ability of generalizing a given conformer to targeted features regardless of its rotations in the 3D space. More significantly, our model also can distinguish the 3D rotations of a molecule and predict the target value, depending upon the rotation degree, in the protein-ligand docking problem, when trained with orientation-dependent datasets. The rotation distinguishability of 3DGCN, along with rotation equivariance, provides a key milestone in the implementation of three-dimensionality to the field of deep-learning chemistry that solves challenging biochemical problems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods