Tied Probabilistic Linear Discriminant Analysis for Speech Recognition

4 Nov 2014  ·  Liang Lu, Steve Renals ·

Acoustic models using probabilistic linear discriminant analysis (PLDA) capture the correlations within feature vectors using subspaces which do not vastly expand the model. This allows high dimensional and correlated feature spaces to be used, without requiring the estimation of multiple high dimension covariance matrices... In this letter we extend the recently presented PLDA mixture model for speech recognition through a tied PLDA approach, which is better able to control the model size to avoid overfitting. We carried out experiments using the Switchboard corpus, with both mel frequency cepstral coefficient features and bottleneck feature derived from a deep neural network. Reductions in word error rate were obtained by using tied PLDA, compared with the PLDA mixture model, subspace Gaussian mixture models, and deep neural networks. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here