Tight Lower Bounds for Combinatorial Multi-Armed Bandits

13 Feb 2020  ·  Nadav Merlis, Shie Mannor ·

The Combinatorial Multi-Armed Bandit problem is a sequential decision-making problem in which an agent selects a set of arms on each round, observes feedback for each of these arms and aims to maximize a known reward function of the arms it chose. While previous work proved regret upper bounds in this setting for general reward functions, only a few works provided matching lower bounds, all for specific reward functions. In this work, we prove regret lower bounds for combinatorial bandits that hold under mild assumptions for all smooth reward functions. We derive both problem-dependent and problem-independent bounds and show that the recently proposed Gini-weighted smoothness parameter (Merlis and Mannor, 2019) also determines the lower bounds for monotone reward functions. Notably, this implies that our lower bounds are tight up to log-factors.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here